100=4.9t^2+5t

Simple and best practice solution for 100=4.9t^2+5t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 100=4.9t^2+5t equation:



100=4.9t^2+5t
We move all terms to the left:
100-(4.9t^2+5t)=0
We get rid of parentheses
-4.9t^2-5t+100=0
a = -4.9; b = -5; c = +100;
Δ = b2-4ac
Δ = -52-4·(-4.9)·100
Δ = 1985
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1985}=\sqrt{1*1985}=\sqrt{1}*\sqrt{1985}=1\sqrt{1985}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-1\sqrt{1985}}{2*-4.9}=\frac{5-1\sqrt{1985}}{-9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+1\sqrt{1985}}{2*-4.9}=\frac{5+1\sqrt{1985}}{-9.8} $

See similar equations:

| 4X+(5*2x)=17 | | 4p-19p-4=19 | | 3(2x+5)=5(x-7) | | 6j+j-j+4j-6j=20 | | 2(2x+1)-3(x+7)=5 | | 5t-t-t-2t=19 | | 20+(3x6)=38 | | 17p-20p+17p=14 | | 3c-3c+2c+3c+c=18 | | 0.08x=160 | | 62x=5,766 | | 8u-u+u-3u+3u=8 | | 16-2x+3x=21 | | 62x=5.766 | | -4(-8p+1)=-92 | | 12m-3m-7m+4m=12 | | 8x+7+9x+16=60 | | 8x+7+9x+16=55 | | 11r+6r-13r=16 | | 8x+7+9x+16=50 | | 8x+7+9x+16=45 | | (8x+51)+(6x-28)=180 | | 18t-16t=4 | | 18t−16t=4 | | 6v-5v=6 | | 3h+h=16 | | 9x4+5=36+6 | | a²-6a+9=0 | | 5(4x+7)=-39+54 | | a/4+4=11+4 | | 11/12k=1/6 | | 9/4n=9 |

Equations solver categories